当X≥0时,证明f(x)=∫(0到x)(t-t^2)(sint)^(2n)dt的最大值 和 证明f﹙x﹚≤1/((2n+2)(2n+3)),

问题描述:

当X≥0时,证明f(x)=∫(0到x)(t-t^2)(sint)^(2n)dt的最大值 和 证明f﹙x﹚≤1/((2n+2)(2n+3)),

  因为f'(x)=(x-x^2)(sinx)^(2n)=x(1-x)(sinx)^(2n),
  由此可知f(x)在[0,1]上递增,在[1,正无穷)上递减,f(1)是最大值,
  因此,只需证明f(1)=∫(0到1)(t-t^2)(sint)^(2n)dt不是全都在 [1,正无穷)上递减吧?会出现多次为零的情况。