已知数列an的前n项和Sn=12n-n^2求数列{│an│}的前n项和Tn

问题描述:

已知数列an的前n项和Sn=12n-n^2求数列{│an│}的前n项和Tn

(1)当n=1时,a1=S1=12×1-12=11;…(1分)
当n≥2时,an=Sn-Sn-1=(12n-n2)-[12(n-1)-(n-1)2]=13-2n.…(3分)
n=1时,a1=11也符合13-2n的形式.
所以,数列{an}的通项公式为an=13-2n.…(4分)
(2)令an=13-2n≥0,又n∈N*,解得n≤6.…(5分)
当n≤6时,Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=Sn=12n-n2;…(8分)
当n>6时,Tn=|a1|+|a2|+…+|a6|+|a7|+…+|an|=a1+a2+…+a6-a7-a8-…-an=2S6-Sn=2×(12×6-62)-(12n-n2)
=n2-12n+72.…(11分)
综上,Tn={12n-n^2,n6