直线l:y=mx+1,双曲线C:3x2-y2=1,问是否存在m的值,使l与C相交于A,B两点,且以AB为直径的圆过原点.

问题描述:

直线l:y=mx+1,双曲线C:3x2-y2=1,问是否存在m的值,使l与C相交于A,B两点,且以AB为直径的圆过原点.

假设存在m值满足条件,设A、B坐标分别为(x1,y1)(x2,y2),由y=mx+13x2−y2=1得:(3-m2)x2-2mx-2=0,则3-m2≠0,且△=4m2-4(3-m2)(-2)>0,得m2<6且m2≠3①,由韦达定理有:x1+x2=2m3−m2,x1x2=−23...
答案解析:假设存在m值满足条件,设A、B坐标分别为(x1,y1)(x2,y2),联立直线方程与双曲线方程,消掉y后得x的二次方程,有△>0,由以AB为直径的圆过原点得OA⊥OB,即

OA
OB
=0,从而可转化为关于A、B坐标的关系式,由直线方程可进一步化为x1,x2的式子,将韦达定理代入即可得m的方程,解出m后检验是否满足△>0即可.
考试点:直线与圆锥曲线的关系;圆的一般方程.
知识点:本题考查直线与圆锥曲线的位置关系、圆的性质,考查转化思想,解决本题的关键是正确理解“以AB为直径的圆过原点”并能合理转化.