a,b是正实数且a+b=1 证明:ab+1/ab〉=4+1/4

问题描述:

a,b是正实数且a+b=1 证明:ab+1/ab〉=4+1/4

a+b>=2√ab
√ababab+1/ab>=1/4+4
所以成立

ab+1/ab=ab+(a+b)/ab=ab+1/a+1/b
=ab+(a+b)/a+(a+b)b
=ab+2+a/b+b/a
>=ab+2+2
=ab+4
=a*(1-a)+4
那么设y=-a^2+a+4 (0