a、b、u都是正实数,且a、b满足(1/a)+(9/b)=1,则使a+b≥u恒成立的U的取值范围是?

问题描述:

a、b、u都是正实数,且a、b满足(1/a)+(9/b)=1,则使a+b≥u恒成立的U的取值范围是?

解,a+b=(a+b)(1/a+9/b)=1+9a/b+b/a+9=10+9a/b+b/a》10+2*√(9a/b*b/a)=16,0