已知非零实数x,y,z满足x+y+z=0,求x(1/y+1/z)+y(1/x+1/z)+z(1/x+1/y)的值.谢.
问题描述:
已知非零实数x,y,z满足x+y+z=0,求x(1/y+1/z)+y(1/x+1/z)+z(1/x+1/y)的值.谢.
答
x(1/y+1/z)+y(1/x+1/z)+z(1/x+1/y)乘以xyz得
x(xz+xy)+y(yz+xy)+z(yz+xz)
=(-y-z)(xz+xy)+y(yz+xy)+z(yz+xz)
=-xyz-xy²-xz²-xyz+y²z+xy²+yz²+xz²
=-2xyz+y²z+yz²
=yz(-2x+y+z)
=yz(-2x-x)
=-3xyz
所以
x(1/y+1/z)+y(1/x+1/z)+z(1/x+1/y)
=-3xyz/xyz
=-3
答
x+y+z=0 (x+y=-z x+z=-y y+z=-x)
x(1/y+1/z)+y(1/x+1/z)+z(1/x+1/y)
=x/y+x/z+y/x+y/z+z/x+z/y
=y/x+z/x+x/y+z/y+x/z+y/z
=(y+z)/x+(x+z)/y+(x+y)/z
=(-x/x)+(-y/y)+(-z/z)
=-1-1-1
=-3
答
x(1/y+1/z)+y(1/x+1/z)+z(1/x+1/y)
=(y+z)/x+(x+z)/y+(x+y)/z
=(-x)/x+(-y)/y+(-z)/z
=-1-1-1
=-3