(x-1/2)²(x²+1/4)²(x+1/2)²

问题描述:

(x-1/2)²(x²+1/4)²(x+1/2)²

答:
连续应用平方差公式
(x-1/2)²(x²+1/4)²(x+1/2)²
=[(x-1/2)(x²+1/4)(x+1/2)]²
=[(x-1/2)(x+1/2)(x²+1/4)]²
=[(x²-1/4)(x²+1/4)]²
=(x^4-1/16)²
=x^8-(x^4)/8+1/256

原式=[(x-1/2)(x+1/2)(x²+1/4)]²
=[(x²-1/4)(x²+1/4)]²
=(x^4-1/4)²
=x^8-1/2x^4+1/16