三角形abc中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1问题(1)求证a,b,c成等差数列(2)若c=90°求a除b的值

问题描述:

三角形abc中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1
问题(1)求证a,b,c成等差数列(2)若c=90°求a除b的值

(1)sinAsinB+sinBsinC+cos2B=1 得到sinAsinB+sinBsinC=1-cos2B=2sinB平方
两边同时除以sinB平方 得到(sinA/sinB)+(sinC/sinb)=2 利用a/sinA=b/sinB=c/sinC得到(
a/b)+(c/b)=2 进一步得到 a+c=2b 所以。。
(2)因为角c=90度,则由勾股定理得到a^2+b^2=c^ 加上a+c=2b 推出c=2b-a 带入勾股定理 得到:a/b=3/4 。
望采纳

sinAsinB+sinBsinC+cos2B=1
sinAsinB+sinBsinC=1-cos2B
sinAsinB+sinBsinC=2sin²B
根据正弦定理有 ab+bc=2b²
就是 a+c=2b
所以 a,b,c成等差数列。
如果C=90度
设 a=x-n,b=x, c=x+n
则 (x-n)²+x²=(x+n)²
可得 x=4n
a/b=(x-n)/x=3n/4n=3/4

a/sinA = b/sinB = c/sinC = 2R

sinA = a/(2R), sinB = b/(2R), sinC = c/(2R)

sinAsinB + sinBsinC + cos2B = 1

a/(2R)*b/(2R) + b/(2R) *c/(2R) + 1 - 2(sinB)^2 = 1

(a*b)/(4R^2) + (b*c)/(4*R^2) = 2 (sinB)^2 = 2*b^2/(4R^2)

所以,

a*b + b*c = 2*b^2

a + c = 2b

  1. 所以,a、b、c 成等差数列

  2. 因为 C = 90°,则 sinC = 1,c = 2R,sinA = cosB

    (a+c)/(sinA+1) = 2b/(sinA+1) = b/sinB

    2sinB = sinA + 1

    4(sinB)^2 = 4 - 4*(cosB)^2 = (sinA)^2 + 2sinA +1 = (cosB)^2 + 2cosB + 1

    5(cosB)^2 + 2cosB - 3 = 0

    所以,cosB = sinA = [-2+√(2^2 + 4*5*3)]/(2*5) = [-2+8]/10 = 0.6

    sinB = cosA = √[1-(sinA)^2] = 0.8

    因此,a/b = sinA/sinB = 0.6/0.8 = 3/4

(1)由于sinAsinB+sinBsinC+cos2B=1,sinAsinB+sinBsinC=2sinBsinB,sinA+sinC=2sinB。根据正玄定理,a+c=2b。证毕。(2)因为c=90°,a*a+b*b=c*c,且a+c=2b。消c。得a/b=0.75.

证明:sinAsinB+sinBsinC+cos2B=1sinAsinB+sinBsinC=1-cos2BsinAsinB+sinBsinC= 2sin²B得sinA + sinC = 2 sinB因为正弦定理 a/sinA = b/sinB = c/sinC正弦函数和对应边成比例,即得a+c =2b移项 c-b = b-a...