设函数f(x)在x=Xo处具有二阶导数f''(Xo),证明{f(Xo+h)+f(Xo-h)-2f(Xo)}/h^2的极限等于f"(X0)
问题描述:
设函数f(x)在x=Xo处具有二阶导数f''(Xo),证明{f(Xo+h)+f(Xo-h)-2f(Xo)}/h^2的极限等于f"(X0)
答
lim {f(Xo+h)+f(Xo-h)-2f(Xo)}/h^2
= lim {f′(Xo+h)-f′(Xo-h)}/2h
=lim {[f′(Xo+h)-f′(x0)]/h+[f′(Xo-h)-f′(x0)]/(-h)}
=2f″(x0)