设曲线y=f(x)在原点与X轴相切,函数f(x)具有连续的二阶导数,且x≠0时,f的一阶导数不等于0,证明该曲线在原点处的曲率半径为R=limx→0|x^2/(2f(x))|
问题描述:
设曲线y=f(x)在原点与X轴相切,函数f(x)具有连续的二阶导数,且x≠0时,f的一阶导数不等于0,证明该曲线在原点处的曲率半径为R=limx→0|x^2/(2f(x))|
答
这不是抛物线的曲率吗