观察下面的几个算式,你发现了什么规律?①16×14=224=1×(1+1)×100+6×4②23×27=621=2×(2+1)×100+3×7③32×38=1216=3×(3+1)×100+2×8…(1)按照上面的规律,迅速写出答案.81×89=______ 73×77=______ 45×45=______ 64×66=______(2)用公式(x+a)(x+b)=x2+(a+b)x+ab证明上面所发现的规律.(提示:可设这两个两位数分别是(10n+a)、(10n+b),其中a+b=10)则(10n+a)•(10n+b)=______.
问题描述:
观察下面的几个算式,你发现了什么规律?
①16×14=224=1×(1+1)×100+6×4
②23×27=621=2×(2+1)×100+3×7
③32×38=1216=3×(3+1)×100+2×8
…
(1)按照上面的规律,迅速写出答案.
81×89=______ 73×77=______ 45×45=______ 64×66=______
(2)用公式(x+a)(x+b)=x2+(a+b)x+ab证明上面所发现的规律.
(提示:可设这两个两位数分别是(10n+a)、(10n+b),其中a+b=10)
则(10n+a)•(10n+b)=______.
答
(1)81×89=8×(8+1)×100+1×9=7209;73×77=7×(7+1)×100+3×7=5621;45×45=4×(4+1)×100+5×5=2025;64×66=6×(6+1)×100+4×6=4224;
(2)发现的规律为:(10n+a)•(10n+b)=100n(n+1)+ab,
证明:∵a+b=10,
∴等式左边=100n2+10bn+10an+ab=100n2+10n(a+b)+ab=100n2+100n+ab,
右边=100n2+100n+ab,
∴左边=右边,
则(10n+a)•(10n+b)=100n(n+1)+ab.
故答案为:(1)7209;5621;2025;4224;(2)100n(n+1)+ab
答案解析:(1)由一系列等式,归纳总结规律,利用得出的规律快速计算即可得到结果;
(2)归纳总结得到的规律用n,a及b表示出来,左右两边化简后可得出左右两边相等,得证.
考试点:整式的混合运算.
知识点:此题考查了整式混合运算的应用,找出题中的规律是解本题的关键.