椭圆与中点弦的问题,椭圆不知,弦方程以及弦中点已知,求椭圆方程.已知椭圆,X^2/a^2+Y^2/b^2=1的一条弦所在的直线方程是X-Y+3=0,弦的中点坐标是 (-2,1),则椭圆的离心率是? A.1/2 B 2份之根号2 C 2份之根号3 D 5份之根号5
问题描述:
椭圆与中点弦的问题,椭圆不知,弦方程以及弦中点已知,求椭圆方程.
已知椭圆,X^2/a^2+Y^2/b^2=1的一条弦所在的直线方程是X-Y+3=0,弦的中点坐标是 (-2,1),则椭圆的离心率是? A.1/2 B 2份之根号2 C 2份之根号3 D 5份之根号5
答
先推导一个有关椭圆中点弦的一般性结论:设椭圆x^2/a^2+y^2/b^2=1弦的两端点为(x1,y1),(x2,y2),(x1≠x2)∴有x1^2/a^2+y1^2/b^2=1x2^2/a^2+y2^2/b^2=1两式相减得:(x1+x2)(x1-x2)/a^2+(y1+y2)(y1-y2)/b^2=0∵p(x0...