已知函数f(x)=1+2/x,求f(1)*f(2)*f(3)...*f(100)的值

问题描述:

已知函数f(x)=1+2/x,求f(1)*f(2)*f(3)...*f(100)的值

f(x)=(2+x)/x
f(1)*f(2)*f(3)...*f(100)=3*4*5*6...*100*101*102/1*2*3*...*100=101*102/2=5151

f(x)=1+2/x=(x+2)/x

f(1)*f(2)*f(3)...*f(100)
=3/1*4/2*5/3*6/4*..........*100/98*101/99*102/100
=101*102/(1*2)
=5151

f(1)*f(2)*f(3)...*f(100)
=(1+2)(1+1)(1+2/3)```(1+2/100)
=3/1*4/2*5/3*```*102/100
=(3*4*5*6*···*102)/(1*2*3*4*···*100)(约分)
=(101*102)/1*2
=101*51
=5151