数列{an}的前n项和为Sn=npan(n∈N*)且a1≠a2,(1)求常数p的值;(2)证明:数列{an}是等差数列.
问题描述:
数列{an}的前n项和为Sn=npan(n∈N*)且a1≠a2,
(1)求常数p的值;
(2)证明:数列{an}是等差数列.
答
(1)当n=1时,a1=pa1,若p=1时,a1+a2=2pa2=2a2,
∴a1=a2,与已知矛盾,故p≠1.则a1=0.
当n=2时,a1+a2=2pa2,∴(2p-1)a2=0.
∵a1≠a2,故p=
.1 2
(2)由已知Sn=
nan,a1=0.1 2
n≥2时,an=Sn-Sn-1=
nan-1 2
(n-1)an-1.1 2
∴
=an an−1
.则n−1 n−2
=an−1 an−2
,n−2 n−3
=a3 a2
.2 1
∴
=n-1.∴an=(n-1)a2,an-an-1=a2.an a2
故{an}是以a2为公差,以a1为首项的等差数列.
答案解析:(1)由题设条件知若p=1时,a1=a2,与已知矛盾,故p≠1.则a1=0.n=2时,(2p-1)a2=0.所以p=
.1 2
(2)由题设条件知
=an an−1
.则n−1 n−2
=an−1 an−2
,n−2 n−3
=a3 a2
.由此可知{an}是以a2为公差,以a1为首项的等差数列.2 1
考试点:数列的应用;数列的求和;数列递推式.
知识点:本题为“Sn⇒an”的问题,体现了运动变化的思想.