数列{an}的前n项和为Sn=npan(n∈N*)且a1≠a2,(1)求常数p的值;(2)证明:数列{an}是等差数列.

问题描述:

数列{an}的前n项和为Sn=npan(n∈N*)且a1≠a2
(1)求常数p的值;
(2)证明:数列{an}是等差数列.

(1)当n=1时,a1=pa1,若p=1时,a1+a2=2pa2=2a2
∴a1=a2,与已知矛盾,故p≠1.则a1=0.
当n=2时,a1+a2=2pa2,∴(2p-1)a2=0.
∵a1≠a2,故p=

1
2

(2)由已知Sn=
1
2
nan,a1=0.
n≥2时,an=Sn-Sn-1=
1
2
nan-
1
2
(n-1)an-1
an
an−1
=
n−1
n−2
.则
an−1
an−2
=
n−2
n−3
a3
a2
=
2
1

an
a2
=n-1.∴an=(n-1)a2,an-an-1=a2
故{an}是以a2为公差,以a1为首项的等差数列.
答案解析:(1)由题设条件知若p=1时,a1=a2,与已知矛盾,故p≠1.则a1=0.n=2时,(2p-1)a2=0.所以p=
1
2

(2)由题设条件知
an
an−1
=
n−1
n−2
.则
an−1
an−2
=
n−2
n−3
a3
a2
=
2
1
.由此可知{an}是以a2为公差,以a1为首项的等差数列.
考试点:数列的应用;数列的求和;数列递推式.
知识点:本题为“Sn⇒an”的问题,体现了运动变化的思想.