已知:如图,△ABC是等边三角形,BD是AC边上的高,延长BC到E,使CE=CD.求证:点D在BE的垂直平分线上.

问题描述:

已知:如图,△ABC是等边三角形,BD是AC边上的高,延长BC到E,使CE=CD.求证:点D在BE的垂直平分线上.

证明:∵△ABC是等边三角形,BD⊥AC,
∴∠DBE=30°,∠ACB=60°,
∵CE=CD,
∴∠CDE=∠E,
∵∠ACB是△CDE的外角,
∴∠ACB=∠E+∠CDE=60°,
∴∠E=30°,
∴∠E=∠DBE=30°,
∴BD=DE,
∴△BDE是等腰三角形,
∴点D在BE的垂直平分线上.
答案解析:先根据△ABC是等边三角形,BD⊥AC可知∠DBE=30°,∠ACB=60°,再根据CE=CD可知∠CDE=∠E,由三角形外角的性质可知∠ACB=∠E+∠CDE=60°,故∠E=30°,故可得出∠E=∠DBE=30°,故BD=DE,再根据等腰三角形的性质得出点D在BE的垂直平分线上.
考试点:等边三角形的性质;线段垂直平分线的性质.
知识点:本题考查的是等边三角形的性质及三角形外角的性质,根据题意得出△BDE是等腰三角形是解答此题的关键.