等比数列{an}的公比为正数,且a3*a9=2(a5*a5),a2=1,则a1=( )答案√2/2
问题描述:
等比数列{an}的公比为正数,且a3*a9=2(a5*a5),a2=1,则a1=( )
答案√2/2
答
a3*a9=a6*a6=2(a5*a5),而a6=q*a5,
所以,q*q=,所以q=√2,a1=a2/q=1/√2=√2/2
答
a3*a9=(a5/q²)*(a5*q²*q²)=(a5)²*q²=2(a5)²
∴q²=2,q=±√2
由于公比为正数,故q=√2
a1=a2/q=√2/2
答
可设通项an=a1×q^(n-1).(q>0,n=1,2,3...).由题设应有:a1q=1.a1q²×a1q^8=2a1²q^8.===>q=√2.∴a1=√2/2.