已知数列{an}的前n项和为Sn=n平方-3n,求(1) an(2) 求证数列{an}是等差数列
问题描述:
已知数列{an}的前n项和为Sn=n平方-3n,求(1) an
(2) 求证数列{an}是等差数列
答
Sn = a1 + a2 + …… a(n-1) + a(n)S(n-1) = a1 + a2 + …… + a(n-1)所以Sn - S(n-1) = anan = n^2 - 3n - [(n-1)^2 - 3(n-1)]= n^2 -3n - ( n^2 -5n + 4)= 2n -4(2) an = 2n -4a(n-1) = 2(n-1) - 4 = 2n -6an - a(...