已知等比数列{an}的前n项和为Sn,Sn=[(an+1)/2]²,n∈N*,bn=(-1)∧n×Sn,求数列bn的前n项和Tn.

问题描述:

已知等比数列{an}的前n项和为Sn,Sn=[(an+1)/2]²,n∈N*,bn=(-1)∧n×Sn,求数列bn的前n项和Tn.

n=1时,a1=S1=[(a1+1)/2]²(a1-1)²=0a1=1n≥2时,an=Sn-S(n-1)=[(an +1)/2]²-[(a(n-1)+1)/2]²整理,得an²-a(n-1)²-2an-2a(n-1)=0[an+a(n-1)][an-a(n-1)]-2[an+a(n-1)]=0[an+a(n-1)][an-a(...额,不好意思啊,我发错了,{an}是等差,能再做一次吗……-_-||n=1时,a1=S1=[(a1+1)/2]²(a1-1)²=0a1=1n≥2时,an=Sn-S(n-1)=[(an +1)/2]²-[(a(n-1)+1)/2]²整理,得an²-a(n-1)²-2an-2a(n-1)=0[an+a(n-1)][an-a(n-1)]-2[an+a(n-1)]=0[an+a(n-1)][an-a(n-1)-2]=0an=-a(n-1)或an-a(n-1)=2an=-a(n-1)时,an/a(n-1)=-1,为定值,数列{an}是以1为首项,-1为公比的等比数列,与已知数列是等差数列不符,舍去。an-a(n-1)=2时,2为定值,数列{an}是以1为首项,2为公差的等差数列an=1+2(n-1)=2n-1Sn=(a1+an)n/2=(1+2n-1)n/2=n²bn=(-1)ⁿ·Sn=(-1)ⁿ·n²n为偶数时,Tn=b1+b2+...+bn=-1²+2²-3²+4²-...-(n-1)²+n²=(2²-1²)+(4²-3²)+...+[n²-(n-1)²]=(2+1)(2-1)+(4+3)(4-3)+...+[n+(n-1)][n-(n-1)]=1+2+3+4+...+(n-1)+n=n(n+1)/2n为奇数时,Tn=b1+b2+...+bn=-1²+2²-3²+4²-...-(n-2)²+(n-1)²-n²=(2²-1²)+(4²-3²)+...+[(n-1)²-(n-2)²]-n²=(2+1)(2-1)+(4+3)(4-3)+...+[(n-1)+(n-2)][(n-1)-(n-2)]-n²=1+2+3+4+...+(n-1)-n²=n(n-1)/2 -n²=-n(n+1)/2综上,得Tn=(-1)ⁿ·n(n+1)/2