设函数 f(x)=1/(x+2) + lg(1-x)/(1+x)证明方程f-1(x)=0有唯一解

问题描述:

设函数 f(x)=1/(x+2) + lg(1-x)/(1+x)证明方程f-1(x)=0有唯一解
没有学反函数
lg[(1-x)/(1+x)]

证明:∵f(0)=,∴f--1()=0,即x=是方程f--1(x)=0的一个解.
若方程f--1(x)=0还有另一个解x0≠,则f--1(x0)=0,
由反函数的定义知f(0)=x0≠,与已知矛盾,故方程f--1(x)=0有惟一解