如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB于D,E是AC的中点,DE的延长线与BC的延长线交于点F. (1)求证:△FDC∽△FBD; (2)求证:DF/BF=AC/BC.
问题描述:
如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB于D,E是AC的中点,DE的延长线与BC的延长线交于点F.
(1)求证:△FDC∽△FBD;
(2)求证:
=DF BF
.AC BC
答
(1)证明:∵CD⊥AB,
∴∠ADC=90°,
∵E是AC的中点,
∴DE=EC,
∴∠EDC=∠ECD,
∵∠ACB=90°,∠BDC=90°
∴∠ECD+∠DCB=90°,∠DCB+∠B=90°,
∴∠ECD=∠B,
∴∠FDC=∠B,
∵∠F=∠F,
∴△FBD∽△FDC;
(2)∵△FBD∽△FDC,
∴
=DF BF
,DC BD
∵△BDC∽△BCA,
∴
=DC BD
,AC BC
∴
=DF BF
.AC BC