如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F. 求证:(1)△ADF∽△EDB; (2)CD2=DE•DF.
问题描述:
如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.
求证:(1)△ADF∽△EDB;
(2)CD2=DE•DF.
答
证明:(1)在Rt△ABC中,
∠B+∠A=90°
∵DF⊥AB
∴∠BDE=∠ADF=90°
∴∠A+∠F=90°,
∴∠B=∠F,
∴△ADF∽△EDB;
(2)由(1)可知△ADF∽△EDB
∴∠B=∠F,
∵CD是Rt△ABC斜边AB上的中线
∴CD=AD=DB,
∴∠DCE=∠B,
∴∠DCE=∠F,
∴△CDE∽△FDC,
∴
=CD DF
,DE DC
∴CD2=DF•DE.