设{an}等差数列,{bn}是正项等比数列,且a1=b1,a(2n+1)=b(2n+1),则a(n+1)与b(n+1)的大小关系为
问题描述:
设{an}等差数列,{bn}是正项等比数列,且a1=b1,a(2n+1)=b(2n+1),则a(n+1)与b(n+1)的大小关系为
答
an = a1 + (n-1)*d a = a1 + 2nd bn = b1 * q^(n-1) b = b1 * q^(2n) a1 + 2nd = a1 * q^(2n) 2(a1 + nd) = a1 * [1 + q^(2n)] a = a1 + nd = a1 * [1 + q^(2n)]/2 b = a1 * q^n a - b = (a1 /2) * [q^(2n) - 2 q^n ...