曲线上任一点的切线与两坐标轴所围成的三角形的面积都等于常数a²,求该曲线所满足的微分方程?

问题描述:

曲线上任一点的切线与两坐标轴所围成的三角形的面积都等于常数a²,求该曲线所满足的微分方程?

曲线上任一点的切线是y-y0=y' (x-x0)它和x轴的交点是(x0-y0/y',0)它和x轴的交点是(0,y0-y'x0)与坐标轴围成的面积是(1/2)|x0-y0/y'||y0-y'x0|=a因为对任意点适合,改写成(1/2)|x-/y/y'||y-y'x|=a两边平方得(1/4...