先分解因式 再计算求值(x-y/2)^2-(x+y/2)^2 其中x、y互为倒数
问题描述:
先分解因式 再计算求值
(x-y/2)^2-(x+y/2)^2 其中x、y互为倒数
答
(x-y/2+x+y/2)(x-y/2-x-y/2)=-2xy=-2
答
假设y/2为z(为了方便看)
(x-z)^2-(x+z)^2=x^2+z^2-2xz-x^2-z^2-2xz=-4xz=-4x(y/2)=-2xy=-2
答
x、y互为倒数则xy=1
原式=(x-y/2+x+y/2)(x-y/2-x-y/2)
=2x(-y)
=-2xy
=-2
答
原式=(x-y/2+x+y/2)(x-y/2-x-y/2)
= -2xy
=-2
答
(x-y/2)^2-(x+y/2)^2
=(x-y/2)-(x+y/2)][(x-y/2)+(x+y/2)]
=(x-y/2-x-y/2)(x-y/2+x+y/2)
=(-y)*2x
=-2xy
=-2*1
=-2