已知直线l的斜率为16,且和两坐标轴围成面积为3的三角形,则直线l的方程为______.

问题描述:

已知直线l的斜率为

1
6
,且和两坐标轴围成面积为3的三角形,则直线l的方程为______.

由题意可得,可设直线l的方程为 y=16x+b,显然此直线和两坐标轴的交点分别为(0,b)、(-6b,0).再由直线和两坐标轴围成面积为3的三角形,可得 12|b|•|-6b|=3,解得 b=±1,故直线的方程为 y=16x±1,即 x-...
答案解析:设直线l的方程为 y=

1
6
x+b,求得此直线和两坐标轴的交点的坐标,再由直线和两坐标轴围成面积为3的三角形,求得b的值,可得所求的直线方程.
考试点:直线的点斜式方程.
知识点:本题主要考查用待定系数法求直线的方程,属于基础题.