跪求极限Y=lim (xy+1)/x^4+y^4,当(x,y)→(0,0),
问题描述:
跪求极限Y=lim (xy+1)/x^4+y^4,当(x,y)→(0,0),
答
当(x,y)→(0,0),
xy+1 -->1
x^4+y^4 -->0
Y=lim (xy+1)/x^4+y^4 =无穷大
答
=lim(xy+1)/x^4+y^4
趋于无穷大
答
Y=lim (xy+1)/x^4+y^4 =lim (xy+1)/lim (x^4+y^4) 又(x,y)→(0,0),则有:lim (xy+1)=1,(x^4+y^4)∈(0,1)Y=lim (xy+1)/x^4+y^4 =lim (xy+1)/lim (x^4+y^4) =∞(当(x,y)→(0,0)时)...