如图所示,在直四棱柱ABCD-A1B1C1D1中,底面是正方形,E、F、G分别是棱B1B、D1D、DA的中点.求证:平面AD1E∥平面BGF.
问题描述:
如图所示,在直四棱柱ABCD-A1B1C1D1中,底面是正方形,E、F、G分别是棱B1B、D1D、DA的中点.求证:平面AD1E∥平面BGF.
答
∵G、F分别是AD、D1D的中点,∴GF是△DAD1的中位线,∴GF∥AD1,∴AD1∥平面BGF.∵ABCD-A1B1C1D1是直四棱柱,∴BB1=DD1、BB1∥DD1.∵FD1=DD1/2、BE=BB1/2,又BB1=DD1,∴BE=FD1,又BE∥FD1,∴BFD1E是平行四边形,∴BF...