如图,AB是⊙O的直径,P为AB延长线上一点,PD切⊙O于点C,BC和AD的延长线相交于点E,且AD⊥PD.(1)求证:AB=AE;(2)当AB:BP为何值时,△ABE为等边三角形并说明理由.

问题描述:

如图,AB是⊙O的直径,P为AB延长线上一点,PD切⊙O于点C,BC和AD的延长线相交于点E,且AD⊥PD.
(1)求证:AB=AE;
(2)当AB:BP为何值时,△ABE为等边三角形并说明理由.

(1)证明:连接OC,∵PD切⊙O于点C,∴OC⊥PD;又∵AD⊥PD,∴OC∥AD;∵O是AB的中点,∴OC=12AE,而OC=12AB,∴AB=AE.(2)当AB:BP=2:1时,△ABE是等边三角形.理由如下:由(1),知△ABE是等腰三角形,要使△...
答案解析:(1)本题可连接OC,通过证明OC是三角形ABE的中位线,得出OC是AE的一半,根据AB是直径,OC是半径,那么AB=2OC,从而得出AE=AB;
(2)要使三角形ABE是等边三角形,就必须有一个角是60°,那么可得出∠OCB=60°,∠P=30°,因此OP=2OC,那么O、B就是AP的三等分点,AB:PB=2:1.
考试点:切线的性质;等边三角形的判定.


知识点:本题综合考查了切线的性质和三角形中位线的性质以及等边三角形的判定等知识点.