sinA·sin(A-30度)最大值怎么求?
问题描述:
sinA·sin(A-30度)最大值怎么求?
答
方法(1)sinA . sin(A - 30) = (1 / 2)(cos(A - (A - 30)) + cos(A + (A - 30)))
= (1 / 2)(cos30 + cos(2A - 30))
cos(2A - 30)最大值为1,所以原式最大值为(1 / 2)(根号3 / 2 + 1)
方法(2)求导f(A) = sinA . sin(A - 30)
df / dA = cosA sin(A - 30) + sinA cos(A - 30) = sin (A + A - 30)
令df / dA = 0得A = 105
所以最大值为sin105 . sin75,经计算与(1)相同。
答
sinA·sin(A-30度)
= 1/2 [cos30-cos(2a+30)]
= √3/4 - 1/2 cos(2a+30)
sinA·sin(A-30度)最大值 √3/4 + 1/2