一个正四面体的棱长a,求外接球和内接球体积

问题描述:

一个正四面体的棱长a,求外接球和内接球体积

外接球半径是4分之根号6,内接球是12分之根号6
体积应该不难算吧
半径具体的算法:找一个正方体ABCD-EFGH,则A-C-F-H连接可成为一个四面体。四面体边长是a的话,正方体的边长就是2分之根号2*a,四面体的外接球就根正方体的外接球是一样的,其半径是正方体 体对角线的一半,4分之根号6*a.
四面体的高很好计算,是3分之根号6*a,用高减去外界球半径就是内街球半径了,12分之根号6*a

连接正四面体的各个三角形的中心,形成一个新的正四面体.容易证明,新正四面体的边长为a/3.我想,按这个思路做下去,大概是比较简单的做法.原来四面体的内切圆是新四面体的外接圆.所以外接圆半径R是内切圆半径r的3倍.R=3...