数列{an}中,a1=-5,an=(5a(n-1))/(6 - a(n-1))(n大于等于2) 若cn=an/ (an 减1 ) 证明cn为等比数列

问题描述:

数列{an}中,a1=-5,an=(5a(n-1))/(6 - a(n-1))(n大于等于2) 若cn=an/ (an 减1 ) 证明cn为等比数列

∵,an=(5a(n-1))/(6 - a(n-1))∴a(n+1)=5an/(6-an)∵cn=an/(an-1)∴c(n+1)=a(n+1)/[a(n+1)-1]∴c(n+1)/cn= a(n+1)/[a(n+1)-1]* (an-1)/an=[5an/(6-an)]/ [5an/(6-an)-1]*(an-1)/an=5an/(5an-6+an)*(an-1)/an=5/6...