等差数列{an}中,a1+a4+a7=36,a2+a5+a8=33,则a3+a6+a9=______.

问题描述:

等差数列{an}中,a1+a4+a7=36,a2+a5+a8=33,则a3+a6+a9=______.

由等差数列的性质可得,a1+a4+a7=3a4=36,a2+a5+a8=3a5=33
∴a4=12,a5=11,d=-1
a3+a6+a9=3a6=3(a5-1)=30
故答案为:30
答案解析:由等差数列的性质可得,a1+a4+a7=3a4,a2+a5+a8=3a5,从而可求a4,a5,而a3+a6+a9=3a6,利用等差数列的通项公式可求
考试点:等差数列的性质.
知识点:本题主要考查了等差数列的通项公式及等差数列的性质的应用,属于基础试题