等差数列{an}中,若a1+a4+a7=15,a3+a6+a9=3,则S9=______.

问题描述:

等差数列{an}中,若a1+a4+a7=15,a3+a6+a9=3,则S9=______.

由等差数列的性质可得a1+a4+a7=3a4=15,
a3+a6+a9=3a6=3,解之可得a4=5,a6=1,
故a4+a6=6,即2a5=6,a5=3,
故S9=

9(a1+a9)
2
=
9×2a5
2
=27
故答案为:27
答案解析:由题意可得a4=5,a6=1,进而可得a5=3,而S9=9a5,计算可得.
考试点:等差数列的性质.

知识点:本题考查等差数列的性质和求和公式,属中档题.