高二数学求导:y=(x^m+a^m)(x^n+a^n)
问题描述:
高二数学求导:y=(x^m+a^m)(x^n+a^n)
y=(x^m+a^m)(x^n+a^n)
y=sin^4(3x)乘以cos^3(4x)
y=2(e^(x/2)+e^(-x/2))
答
y=(x^m+a^m)(x^n+a^n)y'=(x^m+a^m)'(x^n+a^n)+(x^m+a^m)(x^n+a^n)'=m[x^(m-1)](x^n+a^n)+n[x^(n-1)](x^m+a^m)y=[sin^4(3x)]*[cos^3(4x)]y=[sin^4(3x)]'*[cos^3(4x)]+[sin^4(3x)]*[cos^3(4x)]'=12[sin^3(3x)]*(cos3x)...