∫(dtanx)/( 2 + tan^2 x)
问题描述:
∫(dtanx)/( 2 + tan^2 x)
怎么变成(1/根号2)·arctan(tanx/2)的
答
令a=tanx
则原式=∫da/(2+a²)
=1/2*∫da/(1+a²/2)
=1/2*∫da/[1+(a/√2)²]
=√2/2*∫d(a/√2)/[1+(a/√2)²]
=(1/√2)*aectan(a/√2)+C
=(1/√2)*aectan(tanx/√2)+C