证明:2Cn2+9Cn3+12Cn4+5Cn5=24分之n^(n+2)(n+1)(n-1)

问题描述:

证明:2Cn2+9Cn3+12Cn4+5Cn5=24分之n^(n+2)(n+1)(n-1)
附:组合题,请懂得的回答哈,鄙人不才,

2C[n,2]+9C[n,3]+12C[n,4]+5C[n,5]=2n(n-1)/2!+9n(n-1)(n-2)/3!+12n(n-1)(n-2)(n-3)/4!++5n(n-1)(n-2)(n-3)(n-4)(n-5)/5!=n(n-1)+3n(n-1)(n-2)/2+n(n-1)(n-2)(n-3)/2+n(n-1)(n-2)(n-3)(n-4)/24={24n(n-1)+36n(n-1)(n...