设Q(x1,y1)是圆x^2+y^2=1上的一个动点求动点P(x1^2-y1^2,x1y1)的轨迹方程(用圆的参数方程)

问题描述:

设Q(x1,y1)是圆x^2+y^2=1上的一个动点求动点P(x1^2-y1^2,x1y1)的轨迹方程(用圆的参数方程)

设点B(x1,y1),点C(x2,y2).设BC的中点M为(x,y).则有x1+x2=2x,y1+y2=2y.而BA垂直于CA故,直线BA于CA的斜率相乘为-1,即[(y1-2)/(x1-0)]*[(y2-2)/(x2-0)]=-1即:y1y2-2(y1+y2)+4+x1x2=0.可得:y1y2+x1x2=2*2y=4y.-----式(1...