已知命题p:4-x的绝对值小于等于6,q:x^2-2x+1-a^2=0(a大于0).,若非p是q的充分不必要条件,求a的取值范围

问题描述:

已知命题p:4-x的绝对值小于等于6,q:x^2-2x+1-a^2=0(a大于0).,若非p是q的充分不必要条件,求a的取值范围

p:-2q:x=a+1或a-1
p是q的充分不必要条件,所以a-1在p范围内,而a+1不在,所以9

|4-x|≤6-6≤x-4≤6-2≤x≤10x^2-2x+1-a^2=0(x-1)^2-a^2=0(x-1+a)(x-1-a)=0x=a+1或x=1-a非P是q的充分不必要条件,即方程x^2-2x+1-a^2=0恒在(-∞,-2)U(10,+∞)内有实根.方程x^2-2x+1-a^2=0有实根时,x不一定∈(-∞,-2)U...