在△ABC中,AB=AC,AD和CE是高,它们所在的直线相交于H.(1)若∠BAC=45°(如图①),求证:AH=2BD;(2)若∠BAC=135°(如图②),(1)中的结论是否依然成立?请在图②中画出图形并证明你的结论.
问题描述:
在△ABC中,AB=AC,AD和CE是高,它们所在的直线相交于H.
(1)若∠BAC=45°(如图①),求证:AH=2BD;
(2)若∠BAC=135°(如图②),(1)中的结论是否依然成立?请在图②中画出图形并证明你的结论.
答
知识点:本题重点考查了三角形全等的判定定理及等腰三角形的性质;辅助线的作出是解答本题的关键.
证明:(1)∵AB=AC,AD⊥BC,
∴BC=2BD.
∵CE⊥AB,∠BAC=45°,
∴∠ECA=45°.
∴AE=CE.
又AD⊥BC,CE⊥AB,
可得∠EAH=∠ECB,
在△AEH和△CEB中,
∠EAH=∠ECB AE=CE ∠AEH=∠BEC
∴△AEH≌△CEB(ASA).
∴AH=BC.
∴AH=2BD.
(2)答:(1)中结论依然成立.
所画图形如图所示.延长BA交HC于E.
∵∠BAC=135°,
∴∠CAE=45°.
∵AE⊥HC,
∴∠ACE=∠CAE=45°.
∴AE=CE.
∵HD⊥BC,BE⊥HC,
可得∠B=∠H.
在Rt△BEC和Rt△HEA中,
∠B=∠H ∠BEC=∠HEA CE=AE
∴Rt△BEC≌Rt△HEA(AAS).
∴AH=BC.
又BC=2BD,
∴AH=2BD.
答案解析:(1)已知AB=AC,AD⊥BC,推出BC=2BD,继而推出∠EAH=ECB,可证得△AEH≌△CEB.
(2)证明∠ACE=∠CAE=45°,可推出Rt△BEC≌Rt△HEA,继而求证.
考试点:等腰三角形的性质;全等三角形的判定与性质.
知识点:本题重点考查了三角形全等的判定定理及等腰三角形的性质;辅助线的作出是解答本题的关键.