求f(x)=log2为底,二分之x的对数乘以log二为底,四分之x的对数的最值及此时x的值
问题描述:
求f(x)=log2为底,二分之x的对数乘以log二为底,四分之x的对数的最值及此时x的值
答
log2 (x/2)*log2 x/4利用对数运算性质=(log2 x-log2 2)(log2 x-log2 4)=(log2 x-1)(log2 x-2)=(log2 x)²-3log2 x+2这是复合函数设log2 x=t原函数=t²-3t+2对称轴是t=3/2∴t=3/2时有最小值=9/4-9/2+2=-1/4此...