定积分的证明设y=f(x)及y=g(x)在[a,b]上连续.证明: (∫f(x)g(x)dx)^2=0左端的被积函数展开为参数t的二次三项式.)
问题描述:
定积分的证明
设y=f(x)及y=g(x)在[a,b]上连续.证明:
(∫f(x)g(x)dx)^2=0左端的被积函数展开为参数t的二次三项式.)
答
(∫f(x)g(x)dx)^2=0因此展开得:∫[f(x)^2+2tf(x)g(x)+t^2g(x)^2]dx>=0则:t^2∫g(x)^2dx+2t∫f(x)g(x)dx+∫[f(x)^2dx>=0即关于t的抛物线方程恒大于等于0,则根据图像得:判别式0,恒成立4[∫f(x)g(x)dx]^2-4∫[f(x)^2...