如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.PO=2,AB=2,求证:(1)PA∥平面BDE;(2)平面PAC⊥平面BDE.

问题描述:

如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.PO=

2
,AB=2,求证:

(1)PA∥平面BDE;
(2)平面PAC⊥平面BDE.

证明(1)∵O是AC的中点,E是PC的中点,
∴OE∥AP,
又∵OE⊂平面BDE,PA⊄平面BDE,
∴PA∥平面BDE
(2)∵PO⊥底面ABCD,
∴PO⊥BD,
又∵AC⊥BD,且AC∩PO=O
∴BD⊥平面PAC,
而BD⊂平面BDE,
∴平面PAC⊥平面BDE.
答案解析:(1)先根据中位线定理得到OE∥AP,进而再由线面平行的判定定理可得到PA∥平面BDE.
(2)先根据线面垂直的性质定理得到PO⊥BD,结合AC⊥BD根据线面垂直的判定定理得到BD⊥平面PAC,从而根据面面垂直的判定定理得到平面PAC⊥平面BDE,得证.
考试点:直线与平面平行的判定;平面与平面垂直的判定.
知识点:本题主要考查中位线定理、线面平行的判定定理和面面垂直的判定定理.考查立体几何的基本定理和空间想象能力.