在Rt△ABC中,∠C=90°,CD⊥AB,垂足为点D.(1)如果∠A=60°,求证:BD=3AD;(2)如果BD=3AD,求证:∠A=60°.

问题描述:

在Rt△ABC中,∠C=90°,CD⊥AB,垂足为点D.

(1)如果∠A=60°,求证:BD=3AD;
(2)如果BD=3AD,求证:∠A=60°.

证明:(1)∵∠C=90°,CD⊥AB,∠A=60°,∴∠ACD=∠B=30°,∵∠C=90°,CD⊥AB,∴AB=2AC,AC=2AD,∴AB=4AD,∴BD=3AD.(2)取AB的中点O,连接CO,∵BD=3AD,∴设AD=x,则BD=3x,AB=4x,∵∠C=90°,O是AB的中...
答案解析:(1)根据三角形的内角和定理求出∠ACD=∠B=30°,根据含30度角的直角三角形性质求出AB=2AC,AC=2AD即可;
(2)取AB的中点O,连接CO,设AD=x,则BD=3x,AB=4x,根据直角三角形斜边上中线求出AO=CO,AD=DO,证△COA是等边三角形即可求出答案.
考试点:含30度角的直角三角形;等边三角形的判定与性质;直角三角形斜边上的中线.


知识点:本题主要考查对直角三角形斜边上的中线,含30度角的直角三角形,等边三角形的性质和判定等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.