函数y=e-x-ex满足( )A. 奇函数,在(0,+∞)上是减函数B. 偶函数,在(0,+∞)上是减函数C. 奇函数,在(0,+∞)上是增函数D. 偶函数,在(0,+∞)上是增函数
问题描述:
函数y=e-x-ex满足( )
A. 奇函数,在(0,+∞)上是减函数
B. 偶函数,在(0,+∞)上是减函数
C. 奇函数,在(0,+∞)上是增函数
D. 偶函数,在(0,+∞)上是增函数
答
对于函数y=e-x-ex,定义域是R关于原点对称,
并且f(-x)=ex-e-x=-f(x),故函数y=e-x-ex是奇函数
∵y=e-x-ex,
∴y′=-ex-ex=-2ex
当x>0时,y′<0,
∴原函数在(0,+∞)上是减函数,
故选A.
答案解析:验证f(-x)与f(x)的关系,判断出函数是奇函数,再利用导数求解.先求出原函数的导数,再求出导函数的零点,最后考虑零点左右的单调性即可.
考试点:函数奇偶性的判断;函数单调性的判断与证明.
知识点:本题主要考查了函数奇偶性的判断、函数的单调性与导数的关系、指数函数单调性的应用,属于基础题.判断一个函数是否具有奇偶性,先求出定义域,判断定义域是否关于原点对称,若不关于原点对称函数不具有奇偶性;若关于原点对称,再验证f(-x)与f(x)的关系.