如图,点A,B,C,D都在⊙O上,CD的度数等于84°,CA是∠OCD的平分线,则∠ABD+∠CAO=______°.
问题描述:
如图,点A,B,C,D都在⊙O上,
的度数等于84°,CA是∠OCD的平分线,则∠ABD+∠CAO=______°.CD
答
∵圆心角的度数和它们对的弧的度数相等,∴CD的度数等于84°,即∠COD=84°;在△COD中,OC=OD(⊙O的半径),∴∠OCD=∠ODC(等边对等角);又∵∠COD+∠OCD+∠ODC=180°,∴∠OCD=48°;而CA是∠OCD的平分线,∴∠...
答案解析:在等腰△OAC和△OCD中,根据等腰三角形的两个底角相等的性质求得∠OCD=∠ODC、∠CAO=∠OCA,所以由三角形的内角和求得∠OCD=48°;然后根据角平分线的性质求得∴∠OCA=∠ACD=24°;最后由圆周角定理知:∠ABD=
∠AOD,∠OCA=1 2
∠AOD.所以∠ABD=∠CAO,进而求得∠ABD+∠CAO=48°.1 2
考试点:圆周角定理;圆心角、弧、弦的关系.
知识点:本题综合考查了圆周角定理和圆心角、弧、弦的关系.解答此题的关键点是利用“圆心角的度数和它们对的弧的度数相等”求得∠COD=84°.