已知x,y∈R+,2x+5y=10,求xy的最大值及相应x,y的值
问题描述:
已知x,y∈R+,2x+5y=10,求xy的最大值及相应x,y的值
答
当A、B、x、y∈R+, 2x + 5y = 10
2√(ABxy) ≤ (Ax + By),当且仅当Ax = By 时等式成立
所以 xy的最大值为: xy ≤ (Ax + By)² / (4AB),
xy ≤ (Ax + By)² / (4AB) = (2x + 5y)² / (4*2*5) = 100 / 40 = 2.5
此时 2x = 5y 并且2x + 5y = 10
解得 x = 5/2 y = 1 (已经舍去负值)
答
由均值不等式,得 2x+5y=10≥2根号10xy 即 xy≤5/2(当且仅当2x=5y时取等)
x=5/2,y=1时 xy 最大值5/2
答
2x+5y=10,y = (10 - 2x)/5
xy = x(10 - 2x)/5 = -2x²/5+ 2x = (-2/5)(x² -5x)
= (-2/5)[(x- 5/2)² - 25/4]
= (-2/5)(x - 5/2)² + 5/2
x = 5/2 (此时y = 1)时,xy取最大值5/2