化简(1-sina-cosa)÷(1+cosa-sina) (a≠2kπ+π/2,k∈Z) 等于?
问题描述:
化简(1-sina-cosa)÷(1+cosa-sina) (a≠2kπ+π/2,k∈Z) 等于?
答
(1-sina-cosa)/(1+cosa-sina)
=(1-2sina/2cosa/2-1+2(sina/2)^2)/(1+2(cosa/2)^2-1-2sina/2cosa/2)
=(2(sina/2)^2-2sina/2cosa/2)/(2(cosa/2)^2-2sina/2cosa/2)
=[2sina/2(sina/2-cosa/2)]/[2cosa/2(cosa/2-sina/2)]
=-(sina/2)/(cosa/2)
=-tana/2
答
(1-sina-cosa)÷(1+cosa-sina)
=(1-sina-cosa)^2÷[(1-sina)^2-cos^2a]
=(2-2sina-2cosa+2sinacosa)÷(2sin^2a-2sina)
=(1-sina)(1-cosa)/[(sina-1)*sina]
=(cosa-1)/sina.(a≠2kπ+π/2,k∈Z) .
答
(1-sina-cosa)/(1+cosa-sina)=[1-(sina+cosa)]/[1-(sina-cosa)]=[1-(sina+coaa)][1-(sina+cosa)]/[1^2-sina-cosa-sina+cosa+sin^2a-cos^2a]=[1^2-2(sina+cosa)+sina^2+2sinacosa+cos^2a]/[1-2sina+sin^2a-cos^2a]=[2...