已知tanx=4/3,x在(π,3/2π),若tany=1/2,求证 cos(x-y)=2sin(x-y)

问题描述:

已知tanx=4/3,x在(π,3/2π),若tany=1/2,求证 cos(x-y)=2sin(x-y)

tanx=4/3,tany=1/2,则tan(x-y)=[tanx-tany]/[1+tanxtany]=[(4/3)-(1/2)]/[1+(4/3)(1/2)]=1/2,即[sin(x-y)]/[cos(x-y)]=1/2,则cos(x-y)=2sin(x-y)

tan(x-y)=[tanx-tany]/[1+tanx*tany]
=(4/3-1/2)/(1+4/3*1/2)=1/2
即sin(x-y) /cos(x-y)=1/2,
故cos(x-y)=2sin(x-y)

一楼最佳答案
tan(x-y)=(tanx-tany)/(1+tanxtany)=1/2
cos(x-y)=2sin(x-y)