f(x)=2(cosx)^2+sin2x最小值

问题描述:

f(x)=2(cosx)^2+sin2x最小值

f(x)
=1+cos2x+sin2x
=√2sin(2x+π/4)+1
当x=π/8+nπ时,取最大值√2+1
当x=-3π/8+nπ时,取最小值-√2+1
值域为[-√2+1,√2+1]