设实数x,y,m,n满足x^2+y^2=3,m^2+n^2=1,若a≥mx+ny恒成立,求a的取值范围
问题描述:
设实数x,y,m,n满足x^2+y^2=3,m^2+n^2=1,若a≥mx+ny恒成立,求a的取值范围
答
(x-m)^2≥0
(x^2+m^2)/2≥xm
(y-n)^2≥0
(y^2+n^2)/2≥yn
(x^2+m^2+y^2+n^2)/2≥xm+yn
2≥xm+yn
a≥xm+yn
a≥2